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1. INTRODUCTION AND PRELIMINARIES

Let B(X) denote the linear space of all bounded real-valued functions
defined on a set X and let w be a prescribed function in B(X) such that

[) = inf{w(x): x E X} > O.

Define a weighted uniform norm II ·11", on B(X) by

Ilfll", = sup{w(x) If(x)l: x EX}.

(1)

(2)

In particular, when w(x) = 1 for all x E X, the weighted uniform norm II . II",
becomes the usual uniform norm, which will be denoted by 1/ . II. Let B(X) be
partially ordered in the usual way by the relation ~, i.e., let f ~ g denote
f(x) ~ g(x) for all x E X. Iff, g E B(X) andf ~ g, then we denote by [f, gJ
the closed interval in B(X), i.e.,

[f, gJ = {h E B(X): f",; h"'; g}.

Next, for any f E B(X) define the sets

Zf= {x EX: f(x) = O}

and

Mf = {x E X: w(x) If(x)1 = IIfll".}.

Now, let G be a nonempty proper subset of B(X) and letfbe a fixed element
of B(X)\G. Denote

O=Of=inf{lif-hll",: hEG}.
69

(3)
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DEFINITION l. An element g E G such that () = Ilf - gil", is called the
best weighted approximation to f in G.

Let Gf be the set of all best weighted approximations to f in G and let N,
be the error-determining set [21, i.e., let .

Denote by K the set of all positive constant functions defined on X.

DEFINITION 2. The subset G of B(X) is called admissible with respect to
the pair (I., f2)' f., f2 E B(X) if the following three conditions are satisfied:

(i) there exists lEG, I ~ f,. such that g ~ I for every g E G such that
g~f"

(ii) there exists u E G, u ~ f2' such that g ~ u for every g E G such
that g ~f2'

(iii) g - a E G for every a E K and g E G or g + a E G for every
aEK and gE G.

In particular, when f, = f2 on X, we shall say that G is admissible with
respect to fl' Moreover, if G is admissible with respect to every f E F
(0 *Fe B(X», then we shall call G admissible with respect to F. Clearly, if
G is admissible with respect to F, then G is admissible with respect to
(I, '/2)' for each f" f2 E F.

In Section 2 we shall determine the set Gf of all best weighted approx
imations to f by elements of an admissible subset G with respect to (I, ,f2) =
(I - ()!w, f + ()!w). We shall also give explicit expressions to the error
determining set Nf and establish a nonuniqueness result for the best weighted
approximations by elements of admissible subsets. In the next sections we
apply the general theory of the best weighted approximation by elements of
admissible subsets from Section 2 to the cases when G is equal to: the set of
semi-isotone functions (Section 3); to the set of functions with the modulus
of continuity bounded by a prescribed modulus of continuity (Section 4).
and to the set of even functions (Section 5). These three types of the
weighted approximation will also be considered in the subspace Cb(X) of
B(X) of all bounded and continuous functions on a topological space X.
Moreover, the semi-isotone weighted approximation will be considered in the
space BV(X) of functions of bounded variation on a chain X. We note that
the results of Sections 3 and 4 develop the results obtained recently by
Ubhaya in [5-7] in two distinct directions. Finally, we remark that the
structures of admissible subsets can be very different. In particular, G need
not be a convex or even have a weak betweenness property [4] (see
Examples 2 and 3 from Section 2).
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Throughout this section we shall assume that G c B(X) is an admissible
set with respect to (/\' f2) = (f - ()/ w, f + ()/w), where f is arbitrary fixed in
B(X) and () = ()f. Moreover, we shall denote by 1 and u the functions defined
by (i) and (ii) in Definition 2 for the functions fl and f2. At first, we prove
the lemma, which will be useful in the following.

LEMMA 1. The functions 1and u satisfy the inequality 1~ u.

Proof Note that from (ii) and (i) of Definition 2 it follows directly that

1~f2 or u ~fl implies that 1~ u. (4)

Now let us suppose, on the contrary, that 1 is not ~ u. Then, in view of (4),
we may suppose that there exists points s, z E X such that

Define

I(s) > f2(S) and (5)

Then by (i) from Definition 2 and (5) we have

Ilf - gil ... ~ w(s)1 g(s) - f(s)] ~ w(s)[l(s) - f(s)]

> W(S)[f2(S) - f(s)] = ()

for all g E G, g ~ fl. Similarly,

Ilf - gil ... ~ w(z)[f(z) - u(z)] > ()

for all g E G, g ~ f2. Hence

infilif - gil ... : g E O}
~ min(w(s)[/(s) - f(s)], w(z)[f(z) - u(z)]) > (). (6)

We also claim that

inflilf - gllw: g E G\G} > (). (7)

Indeed, suppose that there exists a sequence Igil in G\G such that
IIf - gill ... -+ () as i -+ co. Moreover, let the first part of (iii) from Definition 2
holds, i.e., let g - a E G for every a E K and g E G. Define
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where
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ai = sup{w(xHgj(x) - fix)]: x EX}.

Since g; E G\G then there exists a point t; E X such that

Hence a; > O. Moreover,

w(x)[ g;(x) - f2(X) 1= w(x)[ g;(x) - f(x) + f(x) - f2(X) I
= w(xHg;(x) - f(x)]- 0 ~ Ilf - gillw - 0

for all x E X. Hence a<a; ~ Ilf - gilln' - 0, which in turn, implies that
h; E G and that a; --+ O. Next, from the triangle inequality for the norm and
from (I) it follows that

as i --+ <Xl

and

hi(x) = gj(x) - aJb ~ gi(X) - aJw(x)

~ g;(x) - [g;(x) - f2(X) 1= f2(X)

for all x E X. Hence a~ lim sup;~oo Ilf - h;llw ~ 0 and hi E G, which leads
to a contradiction with (6). Thus, inequality (7) holds. Similarly, we may
prove inequality (7) if only the second part of (iii) of Definition 2 holds. In
this case, we ought to set

where

a; = sup{w(x)[ft(x) - gi(X)/: x EX}.

Finally, combining (6) with (7) we obtain a contradiction with the definition
of e, and so I ~ u must hold. This completes the proof. I

COROLLARY 1. 0 *" a if and only iff E G.

Proof From Lemma I and Definition 2, it follows that

f - Ojw ~ I ~ u ~ f + Ojw. (*)

If f E G, then by (3) it follows immediately that e= O. If e= 0 then by (*),
we have 1= u = f But since lEG, we conclude that f E G, a
contradiction. I
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The connection between the set G[ of all best weighted approximations to I
in G and elements I and u from Definition 2 for It = f - B/w and f2 =
f + B/w is given in the following theorem.

THEOREM I. The best weighted approximation to f in G exists and G[ =

[I, u]nG.

Proof If g E G and I :::;; g :::;; u, then it follows from (*) that
Ilf - gllk':::;; B. Hence, by (3), Ilf - gllw = B. If, on the other hand, g E G,
then -B:::;; w( g - f) :::;; B, which is equivalent to .

II =f - B/w:::;; g:::;;f + B/w=f2'

The proof is completed. I

Now, we shall study the properties of the error-determining set Nt" To this
purpose we shall need the following two lemmas.

LEMMA 2. For f E B(X)\G we have Zh~1 n Z[,_U = 0.

Proof Let us suppose the contrary. Then, there exists z E X such that
fiz) -/(z) =/l(Z) - u(z) = O. Hence u(z) -/(z) =f.(z) - J;(z)
I(z) - ()/w(z) - [f(z) +B/w(z)I = -2()jw(z). It follows from () > 0 and
w(z) > 0 that u(z) < I(z), which contradicts Lemma I. This proves the
lemma. I

LEMMA 3. For the functions I, u we have

and

Proof First, we shall prove the first equality. Let z E M[_I' By
Theorem 1 this is equivalent to

fez) -/(z) = B/w(z) or fez) -/(z) = -B/w(z).

It follows from the definitions of ft and f2 that these equalities are equivalent
to

or fiz) -/(z) = 0,

which in turn, is equivalent to z E Z[,_I U Z12-I' Similarly, we may show the
second equality. The proof is completed. I

In the following theorem, as in Lemma 2, we shall assume that f ~ G. If
f E G then obviously we have 1= u = f and N[ = X.
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THEOREM 2. If f E B(X)\G then the error-determining set Nr satisfies
inclusions Df C Nf C DfU Ef , where

Proof From the definition of the set N, and from I. u E G, (see
Theorem 1) it immediately follows that

Hence by Lemmas 2 and 3 we have

NrC Mr_I n Mf _ u = Dr U Ef ·

Thus, it is enough to prove that Df C Nf' Let g E Gf = [I, uIn G be
arbitrarily fixed and let z E D f . At first, suppose that z E Zf,-t{)Zf,-u'
Then, I(z) = g(z) = u(z), and consequently

fez) - g(z) =f(z) -/(z) =fl(z) -/(z) + 8Iw(z) = 8Iw(z).

From this and from Theorem 1 we conclude that z E Mf - g and so z E Nf ,

since g is arbitrary in Gf" Thus, we conclude that Zf,-I n Zf,-U C Nf .

Similarly, we may prove that Zt,-t n Zt,-u C Nf" The proof of the theorem is
completed. I

Remark 1. If there exists AE (0, 1) such that g = (1 - A) 1+ AU E G
then in Theorem 2 we have Nf = Dr. Indeed, in this case from z E Ef it
foHows that

fez) - g(z) = IA[f(z) - u(z) 1 + (1 - A)[f(z) -/(z) 11

= I( 1 - A) 8Iw(z) - 8Iw(z)1

= 11 - 2A I 8Iw(z) < 8Iw(z).

Hence z (/; Mf - g • Moreover, from g = (1 + A) 1+ AU E Gf we conclude that
z (/; Nf' This and Theorem 2 imply that Nf = Df' In particular, Nf = Df when
G is a convex set. Analogously, we may prove that the equality Nf = Df also
holds for the sets having the betweenness property [2]. But the converse
statement-Nf = Df implies that the set G has the betweenness property-is
not true (see Example 5 below).

Now we shall give three examples which show that both inclusions in
Theorem 2 can be neither improved nor replaced by the equalities Nf = Dfor
Nf = DfU Ef in the case of an arbitrarily admissible set G.
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EXAMPLE 1. Let w(x) = I andf(x)=x2 for all xE [-I, IJ and let G be
a set of all nondecreasing functions in C[-1, I J. Then () = !, G is admissible
with respect to the pair (fl(x),fix» = (x 2-!, x 2 + !), I(x) =! and u(x) =
! + [max(O, xW. Moreover, Zf,-l = {-I, I}, Zt,-u = {-I}, Zh- l = {Of and
Zf2-U = [0, I J. Hence Df = {-I, O} and EJ = {l}. Clearly, {l} E Mf-~' where
g E [I, u1n G is defined by

g(x) =!,

=x,

xE[-I,!J

xE(1,lJ.

Hence Nr= {-I, Of. Thus we have shown that in this case we have

EXAMPLE 2. Let w be identically equal to 1 and letf(x) = Ixl and let the
admissible subset G of C[-l, II with respect to (f1(X),f2(X» = (Ixl-!,
Ixl + 1) be defined by

G = {g: g(x) = a + a max(O, x), a E IR, a = 0 and l}.

Then ()=!, I(x) =! and u(x) =! + max(O, x). Additionally, Zf,-l = {-I, I},
Zf,-u = {-I}, Zh- l = {Of, Zh-U = [0, I J, DJ = {-I, O} and EJ = P}· We
notice that in this case we have G n [I, u I= {t, u}, and so Nr = {-I, 0, I}.
Hence

Note that in this example the set G is not convex. Moreover, this set does not
have the betweenness property [2 J, nor does it have the weak betweenness
property [4 J.

EXAMPLE 3. Let w(x) = 1 and let

f(x) = (x - 1)2,

=Ix-II,

xE [-2, OJ

x E (0,2].

Define the admissible subset G of C[-2, 2] with respect to (I"f2) = (f - 1,
f +!) by

G= {g: g(x)=a +b[min(O, 1 +xW +amax(O,x-l),

a,bEIR,a=Oand I}.
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Then 8=1. I(x)=! and
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I
=2'

= 12(x),

x E [-2, -1]

xE(-l,1]

xE(1,2].

Hence we conclude that Ef = l-2, 2} and

Finally, we state a corollary which gives a condition on nonuniqueness of
the best weighted approximation to I in G.

COROLLARY 2. For IE B(X)\G we have II u -III ... ~ 20. Moreover, if
Ef* 0 then the best weighted approximation to I in G is nonunique and
Ilu -/llw= 20.

The proof of this corollary directly follows from II ~ I ~ u ~ 12'
1II1 - 1211w = 28, and from the definition of Ef . We finish this section by
giving two examples, which show that Corollary 2 is in some sense the best
possible. If Ef = 0, then the best weighted approximation to I in G can either
be unique or nonunique.

EXAMPLE 4. Let w(x) = 1 and I(x) = x 2 and let G be equal to the set K
of all constant functions in C[-1, 11. Then, as can easily be shown: 8 = L
l(x)=u(x)=4 on [-I,ll, Nf=Df = {-l,O, l} and Ef =0. Therefore, by
Theorem 1 the best approximation to I in G is unique.

EXAMPLE 5. Let w(x) = 1, I(x) =° and let G be defined by G =
PU H c C[-1, 1], where

P={p:p(x)=lxl+a,aEIR} and H={h:h(x)=x 2 +a,aEIR}.

Obviously, the set G is admissible with respect to (fp 12) = (f - 1. 1+ !).
Moreover, 8=4, l(x)=x2 -4, u(x)=lxl-!, Nf =Df ={-l,O, l} and
Ef = 0. In this case, by Theorem 1, two distinct elements I and u belong to
Gf and thus the best approximation to I is not unique. Additionally, we have

~=llu-lllw<20=1.
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3. SEMI-IsOTONE ApPROXIMATION
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In this section we assume that X is a partially ordered set with a partial
order ~. For any element x E X define the subsets Lx and Ux of X, respec
tively, by

and

Moreover, let T = {(x, y) E X X X: x ~ y} and t + = max(O, t), t E IR. Given
a function s in B(X) such that sex) ~ 0 for all x E X, define a subset Ps of
B(X) of semi-isotone functions by

Ps = {g E B(X): x ~ y implies g(x) ~ g(y) + s(x)}.

If s = 0 on X, then Ps coincides with the set of all isotone functions [5]
on X.

LEMMA 4. For every r E B(X) the set Ps is admissible with respect to r.
Moreover, I and u from Definition 2 are equal to

and

for all x E X.

I(x) = r(x) + sup [r(z)-r(x)-s(z)l+
ZEL x

u(x)=r(x)- sup [r(x)-r(z)-s(x)]+
ZELJx

(8)

(9)

Proof Let r be arbitrarily fixed in B(X) and let I and u be defined by (8)
and (9), respectively. We first show that condition (i) in Definition 2 is
satisfied for Ps ' To this purpose, let x E X and g E Ps such that g ~ r be
arbitrarily fixed and let y E X be such that x ~ y. Obviously, IE B(X) and
I ~ r. Now, we distinguish between two cases. First, if

then

r(z) ~ rex) + s(z) for each z E Lx'

and

I(x) = rex) = r(y) + sex) + [rex) - r(y) - sex)]

~ sex) + r(y) + [rex) - r(y) - s(x)] + ~ sex) + I(y)

I(x) = rex) ~ g(x).
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Otherwise, for every e > 0 there exists tEL x such that

0< sup [r(z) - rex) - s(z) 1+ ~ ret) - rex) - set) + e.
ZEL x

Then

I(x) ~ rex) + ret) - rex) - set) + e

= e + r(y) + [ret) - r(y) - set) I~ e + I(y)

and

I(x) ~ ret) - s(t) + e ~ g(t) - s(t) + e

~ g(x) + set) - set) + e = g(x) + e.

Hence I(x) ~ I(y) + sex) and I(x) ~ g(x), since e is arbitrary. Combining
these both cases, we conclude that IE Ps and I ~ g. This completes the
verification of condition (i). Similarly, we may show that condition (ii) in
Definition 2 holds for Ps ' Obviously, condition (iii) from Definition 2 is true
for Ps ' Thus, the proof of the lemma is completed. I

We now prove

THEOREM 3. Let IE B(X)\Ps ' Then there exists a best weighted approx
imation to I in Ps ' the set 01 all best weighted approximations to I in P, is
equal to [I, u1n Ps' and the error Of = infgEP , III - gill\' is equal to 0, where

w(x) w(y)
0= sup [/(x)-/(y)--s(x)I+.

Ix.yIET w(x) + w(y)

I(x) = I. (x) + sup [/,(z)-/,(x)-s(z)I+.
=EL., (10)

u(x) = 12(X) - sup [/2(X) - 12(Z) - sex) 1+.
=E (' \

I,=I-O/w and 12 =1 + 0/11'.

Moreover, the error determining set is equal to

NI=(Zf,_{nzJI_U)U(Zj~_/nZ" u)·

In the case when Zf,-I n Zt,-u *- 0. a best weighted approximation tol in P,
is nonunique and II u - III" = 20.

Proof. By Theorems 1 and 2, Remark 1, Corollary 2 and Lemma 4 it is
sufficient to prove that Of is equal to 0 defined in (10). Let us suppose that
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g E Ps is arbitrarily fixed. Then sex) + g(y) - g(x) ~ 0 for all (x, y) E T.
Hence

f(x) - fey) - sex) ~f(x) - fey) - sex) + g(y) - g(x)

~ Ilf - gil ... (l/w(x) + I/w(y»

for all (x, y) E T. This gives 0f~ O. Thus the proof of the theorem will be
completed if we show that IIf -III ... ~ 0 (i.e. that Of ~ 0) holds for I defined in
(10). Note that

w(x)[f(x -1(x)J ~ w(x)[f(x) - fl(x)1 = 0

for all x E X. Hence it is sufficient to prove that

w(x) [/(x) - f(x)J ~ 0

for all x E X. First, let us suppose that x E X is such that

(II )

Then

f,(z) ~;;(x)+ s(z) for all z E Lt'

w(x)[l(x) - f(x)] = w(x)[f, (x) - f(x)J = -0 ~ 0,

i.e., inequality (11) holds in this case. Otherwise, for every f, > a there exists
t E Lx such that

Then, by definitions of l,fl and 0 given in (10), we obtain

w(x) [/(x) - f(x)J

~ w(x)[fl(x) +fl(t) - fl(x) - set) + f, - f(x)J

= w(x)[f(t) - f(x) - s(t) - o/w(t) + f, J

~ w(x) [f(t) - f(x) - set) - W(t)w~x;V(X) (J(t) - f(x) - s(t» + f, ]

[
w(t) ]= w(x) wet) + w(x) (J(t) - f(x) - s(t» + f,

wet) w(x)
~ () () [f(t)-f(x)-s(t)J++f,llwll~o+f,llwll·w t + w x

640/37/1·6
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Since e is arbitrary, then inequality (11) is also satisfied in this case. Thus
Ilf -III", ~ e. This completes the proof. I

The fact that a best weighted approximation to fin Ps may be nonunique
is considered in Example 1 of Section 2. The best weighted approximation
may also be unique. Indeed, if w = 1 and s = 0 on [-1, I]. G = PI C

B[-I, 1], andf(x)=min(O.-x) thenfL=-1 andf2=0 on [-1,1]. Hence
I(x) = u(x) = - t on 1-1, 11, and so the best approximation is unique.

From now to the end of this section X will be a chain. It is well known
(see, e.g. [1, p. 39]) that a chain X is a normal Hausdorff space under its
intrinsic topology generated by the family of open intervals in X. In the
following we assume that X is endowed with this topology. Denote by Cb(X)
the space of all real-bounded and continuous functions defined on a chain X.
Moreover. let BV(X) be the space of all functions of bounded variation
[1, p. 74] on a chain X. In the investigation of the semi-isotone approx
imation in the spaces Cb(X) and BV(X) the following two lemmas are of
importance.

LEMMA 5. Let r, v E Cb(X). Then the functions hand p defined by

h(x) = sup [r(z) - v(x)l+
:EL x

belong to Cb(X).

and p(x) = sup [r(x)-v(z)]+
=E l' \

Proof Obviously, the function hand p are bounded on X. Denote by 0t
the open interval in X containing x such that

Iv(x) - v(z)1 ~ e/3 and Ir(x) - r(z)1 ~ e/3 (12 )

for every z E Ox where e > 0 and x E X are arbitrarily fixed. The existence
of the interval Ox follows from the continuity of v and r on the chain X.
Now, let y be an arbitrary element in Ox' By virtue of the definition of h
there exist elements tx E Lx and ty E L y depending on e/3 such that

h(x)~e/3+[r(tx)-v(x)1+ and h(y)~e/3+[r(t~,)-t'(y)I+. (13)

Define

tXY = tx'

=y,

if tx ~ Y

otherwise
and

=x,

if ty ~ x

otherwise.

Note that from the definitions of tx and tXY it follows that the equality tXI' = Y
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implies that tx E Ox' Thus by the definition of h. (12). (13) and the fact that
tXY E LI' we have

hex) - h(y) ~ s/3 + [r(tx) - v(x)] + - [r(t,>,) - v(y) J+

= s/3 -j- 1(v(y) - v(x) + r(tx> - r(t,y)

+ Ir(t.J - v(x)1 -I r(tx,.) - v(Y)I)

~ s/3 + Iv(y) - v(x)1 + Ir(tx) - r(tx>,)1 ~ s.

Similarly, we show that

h(y) - hex) ~ s/3 + [r(t,.) - v(y)] + - [r(tyx ) - v(x)] +

~ s/3 +Iv(x) - v(y)1 +Ir(tv) - r(tv">l ~ s.. .

Combining these both inequalities, we conclude that hE Cb(X). In a similar
manner we may show that p E Cb(X). The proof is completed. I

LEMMA 6. If r, v E B V(X) and the functions h, p are defined as in
Lemma 5 then h. p E B V(X).

Proof Since r, v E B V(X) then there exists a constant c >0 such that for
every finite chain Zo < ZI < ... < Zn in X we have

n

~ Iw(z;) - W(Zi_I)1 < c,
i~l

(14 )

where W = r or IV = v. Now, let s >0 be arbitrary and let Xo <XI < ... < x n
be a finite chain in X. From the definition of p it follows that there exists
t; E Ux ; such that

p(xi ) ~ s/n + [r(x i) - v(t;} 1+

for i = O. 1,... , n. From this and from t; E Ut, C U
Xi

.
1

we have

p(x;} - P(Xi _1) ~ s/n + [r(xi ) - v(ti )J+ - [r(xi _1) - v(ti)1+

= s/n + Hr(xi) - v(t;) - r(xi -I) + v(tJ

+ Ir(xi) - v(ti)I-lr(xi .· I) - v(ti )1)

~ s/n + Hr(xi) - r(x;_I) + Ir(xi) - r(xi _ l )!)

~ s/n + Ir(x;) - r(xi_I)1 (15)



82 RYSZARD SMARZEWSKI

for i == 1,2,.., n. Moreover, denoting

=X i ,

and noting that y; E Ux we obtain
I

otherwise

P(X;_I) - p(x;) ~ e/n + 1(r(x; _I) - rex;) + v(y;) - v(t; _I)

+ !r(x;_I) - v(t;_I)I-lr(x;) - v(y;)I)

~ e/n + Ir(x;) - r(x;_I)1 + IvC.v;) - v(t;_I)1 (16)

for i=I,2,...,n. Now, let II=U: J';=l;_l' i==I,2,...,n} and 12 =
{I, 2,..., n}\Il = (iI' i 2,..., ik ), where ij < i k for j < k. Then, in view of (15) and
(16), we get

for all i E II and

for all i E 12 , Hence

n

~ Ip(X;) - p(x;_I)1
i= I

n

~e+ ~ Ir(x;)-r(x;_I)I+ ~ IV(X;)-V(ti_1)1.
;= I iEll

Since X;,_I ~ t;,_1 <x;, ~X;2 ~ ... ~Xi,-l ~ ti,_1 < Xi, then from (14) we
conclude that

n
\~

~ Ip(x;) - P(Xi_I)1 ~ 2c,
i=1

i.e., that p E BV(X). The proof of hE BV(X) is similar. This completes the
proof. I

From Theorem 3 and Lemmas 5 and 6 we obtain the following theorem.

THEOREM 4. Let w, s E Cb(X) and G = Ps n Cb(X) (w, s E BV(X) and
G = Ps n BV(X». Then,for eachf E Cb(X)\G (f E BV(X)\G) there exists a
best weighted approximation to fin G, the set of all weighted approximations
Gf is equal to [I, u1n G, and the error Of is equal to 0, where I, u E Gf and 0
are given by formulae (lO)from Theorem 3. Moreover, the error determining
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set is given by the same formula as in Theorem 3, lIu -III", ~ 20, and Efif=. 0
implies that "U - III '" = 20.

4. ApPROXIMATION BY SUBSETS WITH PRESCRIBED MODULUS

OF CONTINUITY

Let wEB [0, 00) be a function satisfying

o~ w(y) - w(x) ~ w(y -x)

whenever 0 ~ x ~ y. In this section we assume that X is a subset of the real
line. Define

H w = {g E B(X): Ig(x) - g(y)1 ~ w(lx - yl) for each x, y EX}.

Now, we shall study best weighted approximations of any f E B(X)\Hw by
elements of H w' To this purpose the following lemma will be needed.

LEMMA 7. The set H w is admissible with respect to each r E B(X).
Moreover, I and u from Definition 2 are equal to

and

I(x) = r(x) + sup [r(z) - r(x) - w(lx - zl)J +
ZEX

(17)

u(x) = r(x) - sup [r(x) - r(z) - w(lx - zl)J +. (18)
ZEX

Proof We prove that condition (ii) from Definition 2 is satisfied for H w

and for u given in (18); the proof of (i) is similar and therefore is omitted.
To this purpose let y E X and g E Hw be such that x ~ y. It is obvious that
u E B(X) and u ~ r. We complete the proof of (ii) showing that g(y) ~ u(y),
u(y) ~ u(x) - w(y - x) and u(x) ~ u(y) - w(y - x), i.e., g ~ u and u E H w '

At first suppose that y E X is such that

r(y) - r(z) ~ w(l y - zl).

Then by the definition of u we have

u(y) = r(y) = r(x) - w(y - x) - [r(x) - r(y) - w(y - x) J

~ r(x) - w(y - x) - [r(x) - r(y) - w(y -x)J +

~u(x)-w(y-x) (19)

and

u(y) = r(y) ~ g(y). (20)
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Otherwise, for every e > 0 there exists t E X such that

0< sup [r(y) - r(z) - w(1 y - zl)] +
:EX

~ r(y) - r(t) - w(1 y - tl) + e.

Then, by the definitions of u, wand Hw ' we easily deduce

u(y) ~ r(x) - r(x) + r(t) + w(1 y - tl) - e

= r(x) - [r(x) - r(t) - w(lt - xl)] + w(ly - tl) - w(lt -xl) - e

~ r(x) - [r(x) - r(t) - w(lt - xl}]+ - w(y -x) - e

~u(x)-w(y-x)-e (21)

and

u(y) ~ r(t) - w(1 y - tl) - e ~ g(t) + w(1 y - tl) - e ~ g(y) - e. (22)

On the other hand, if x is such that r(x) - r(z):( w(lx - zl) for all z E X
then

u(x) = r(x) ~ r(y) - [r(y) - r(x) - w(y - x)] + - w(y - x)

~ u(y) - w(y - x). (23)

In the opposite case, for every e > 0 there exists t E X such that u(x) ~ r(t) +
w(lx - tl) - e. Hence

u(x) ~ r(y) - [r(y) - r(t) - w(1 t - yl)L + w(lx - tl} - w(1 t - yl) - e

~ u(y) - w(y - x) - e. (24)

Since e is arbitrary, then by (19}-(24) it follows that u ~ g and u E Hw '

This completes the proof of (ii). Since the verification of condition (iii) in
Definition 2 is trivial for Hw ' then the proof of the lemma is finished. I

THEOREM 5. Let f E B(X)\Hw' Then there exists a best weighted
approximation to f in Hw' the set of all best weighted approximations to fin
H~, is equal to [I, u] n H w' and the error is equal to e, where

e= sup w7;~~w~r~) [f(x)-f(y)-w(lx-yl)]+
(X,}')EXXX

I(x) = II (x) + sup [f1(Z) - fl(x) - w(lx - zl)]+,
ZEX

u(x) = I2(x) - sup [f2(X) - f2(Z) - w(lx - z I)] +'
ZEX

(25)

II =f - e/w and 12 = I + e/w.
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In the case when Zf, _I n Zh _U '* 0, the best weighted approximation to f in
Hw is nonunique and Ilu -III", = 2B.

Proof By virtue of Theorems 1 and 2, Remark 1, Corollary 2 and
Lemma 4 it is sufficient to prove that

Bf = inf Ilf - gil", = B.
gEH w

Since g E Hw implies that g(x) - g(y) ~ w(lx - yl) then

f(x) - fey) - w(lx - yl) ~f(x) - fey) + g(y) - g(x)

~ Ilf - gil", (l/w(x) + l/w(y»

for all (x, y) E X X X. Hence Bf :) B. On the other hand, for IE Hw defined
by (25) and all x E X we have

w(x) [f(x) -/(x)] ~ w(x)[J(x) - flex)] = B

and either

w(x)[ I(x) - f(x)] = W(X)[fl (x) - f(x)1= -() ~ ()

or

w(x)[/(x) - f(x)] ~ W(X)[fl(t) - w(lx - tl) - f(x) + e]

= w(x)[J(t) - f(x) - w(lx - tl) - B/w(t) +e1

~ w(x) [J(t) - f(x) - w(lx - tl)

- ()W(X) ( ) (f(t) - f(x) - w(lx - tl» + e1
wt +wx J

= w(x) [W(t)w~t~V(X) (J(t) - f(x) - w(lx - tl» + e~

~ B+ e /I wll,

where e > 0 is arbitrary and t dependent on e is such that I(x) ~ f1 (t) 
w(lx - tl) + e. This gives IIf -III", ~ B. Consequently, we obtain Bf = e. This
completes the proof. I
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Let us now assume that X = [a, b] is a compact interval of the real line
and that wE C(O, b - a j is a modulus of continuity, i.e., that limt -0 + w(t) =

w(O) = 0, 0 ~ w(y) - w(x) ~ w(y - x) for all x, y (0 ~ x ~ y ~ b - a). Then
the sets HwnC(a,b] coincide with the well known sets HW (see, e.g. [3,
p. 183 D. In particular, if w(x) = c . x a (0 ~ X ~ b - a and 0 < a ~ 1) then
H W n C(a, b] contains all functions from C(a, b1 which satisfy the Holder
condition with constant c. From Theorem 5 we obtain the following
corollary.

COROLLARY 3. Let w be a modulus of continuity, wE C(a, bland let
G = H W n C [a, b]. Then for each f E C(a, b]\G there exists a best weighted
approximation to f in G, the set of all best weighted approximations Gr is
equal to [I, u j n G and the error er is equal to e, where I, u E Gr and e are
given by formulae (25). Moreover, the error determining set Nr is given by
the same formula as in Theorem 5, II u -lllw ~ 2e, and Er* 0 implies that
II u -lIlw = 2e.

5. ApPROXIMATION BY EVEN FUNCTIONS

In this section let s: X --+ X be a one--one map of an abstract set X on
itself. Define

R s = {g E B(X): g(s(x») = g(x) for each x E Xf.

In particular, if s(x) = -x on a subset Xc IR such that x E X implies
-x E X, then R s is a set of all even functions on X.

THEOREM 6. Let f E B(X)\R s' Then there exists a best weighted approx
imation to f in R p the set of all best weighted approximations to fin R, is
equal to [I, u j n R s' and the error

is equal to e, where

w(x) w(s(x»
e = sup () ( ( » [f(s(x)) - f(x) j,

xeX W X + W S x

l(x) = max[f,(x),f,(s(x))j, u(x) = minlfix),f2(s(x»j,

f, =f - ejw and f2 =f + ejw.

(26)
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Nf = (Zf,_I(J Zf,-J U (Zh-I (J Zr,-u)'

In the case when there exists XoE X such that stxo) = xo' the best weighted
approximation is nonunique and II u -III" = 20.

Proof Obviously, I, u E R s ' If g E R s and g ~ f, then from g(x) ~ fl (x),
g(s(x» ~ fl(S(X» and g(x) = g(s(x» for all x E X we immediately obtain
g(x) ~ I(x) for all x E X. Hence condition (i) in Definition 2 is satisfied for
R s ' Similarly, we may verify condition (ii) in Definition 2. Since
condition (iii) from Definition 2 also holds for the set Rs ' then the set Rs is
admissible with respect to (fl'f2)' Moreover, if s has a fixed point Xo in X
then fl (xo) = I(xo)' h(xo) = u(xo)' and so XoE Zf,-I n Zh-U' Therefore, in
view of Theorems 1 and 2, Remark 1, Corollary 2 and Lemma 4 it is
sufficient to prove that Of = O. Note that

f(s(x» - f(x) = f(s(x» - g(s(x» + g(x) - f(x)

~ Ilf - gil .. [l/w(x) + l/w(s(x» 1

for all g E R 5 and all x E X. Hence Of ~ O. On the other hand, for every
xEX we have

w(x)[f(x) -/(x)J ~ w(x)[f(x) - fleX)] = 0

and either

w(x)[/(x) - f(x)J = W(X)[fI(X) - f(x)J = -0 ~ 0

or

w(x)[/(x) - f(x) J

= w(x)[fl(s(x» - f(x)J

= w(x)[f(s(x» - O/w(s(x» - f(x)]

w(x)
~ w(x)(f(s(x» - () ( ( » [f(s(x» - f(x)]- f(x»wx +wsx .

w(x) w(s(x»
= () ( ( »[f(s(x» - f(x)] ~ o.wx +wsx

Hence IIf -III .. ~ O. Thus Of= O. This completes the proof. I
If s does not have a fixed point in X, then a best weighted approximation

can either be unique or nonunique. Indeed, if sex) = -x, w(x) = 1, and
f(x) = x 3 on X = [-2, -1 JU [1, 2J then fleX) = -Ixl\ hex) = j"xl\ 0 = 8,

640'37/17
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l(x) = Ixl 3
- 8 and u(x) = -lxl 3 + 8. Hence by Theorem 6 the best approx

imation is not unique. But in the case X = [-2, -I] U [1,2] and

f(x)=-x-i,

=x,

xE [-2,-iJ

x E [1,2]

we have fl(x)=lxl-i, J;(x)=lx[, O=i, l(x)=u(x)=lx[-i, i.e., by
Theorem 6 the best approximation is unique.

Remark 2. If we additionally assume that X is a topological space and
that/, wE Cb(X), then from the formulae on I and u given in (26) it follows
that we may replace B(X) by Cb(X) in Theorem 6 without the loss of its
validity.
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